
December 2001 www.stsc.hill.af.mil 9

Avionics upgrades are frequent and
occur for many reasons, including

warfighting enhancements, countering
changing threats, hardware obsolescence,
and computer resource under-capacity. A
typical production avionics upgrade cycle
for military aircraft frequently involves
embedded software changes. New ver-
sions of mission processor software, the
most volatile class of avionics software, are
typically released annually and take two
years to field from initial definition.

Hardware obsolescence occurs collec-
tively over a longer term as vendors
change their business (military/commer-
cial mix) and technology. Software tools
and technology also evolve over a longer
period but may be driven by short-term
events such as the introduction and impo-
sition of Ada. The change cycles are not
synchronized so the optimal hardware,
software and tool technology, and respec-
tive program funding to support an
avionics upgrade at a given point in time
are often not available.

The problem of cost-effectively
upgrading legacy systems can be mitigat-
ed through reengineering with the latest
generation hardware and architectural
concepts, including object-oriented (OO)
software design, which inherently con-
tains and isolates change. However, legacy
avionics software represents a large invest-
ment in development tools, executable
code, and ground and flight qualification.
Should the upgrade require complete
reengineering of this legacy software,
much of this investment is lost; many air-
craft programs simply cannot afford the
up-front costs associated with reengineer-
ing and complete re-qualification.

One solution to this dilemma is
implementing reengineering incremental-
ly by inserting the latest technology in
smaller, affordable steps, thereby reducing
risk and deferring or reducing cost.
Software wrapper technologies hold par-
ticular promise in meeting this challenge.

A wrapper is a software adapter or
shell that isolates a software component
from other components and its processing

environment (its context). The wrapped
component becomes a software object. Its
operational capability (functions and
data) is encapsulated, and it can be inte-
grated through its standard interface with
other software objects to form an opera-
tional flight program (OFP) on a single or
distributed processor host. The wrapper
manages the timeliness of all shared and
external data, and provides any necessary
transformations.

For upgrades, the goal is to develop
the new or reengineered applications
using the latest software engineering tech-
niques such as OO design and languages
(Ada and C++) with minimal concessions
to the internal structure of the legacy sys-
tem. It is developed as if all other applica-
tions were resident in the new environ-
ment. Because the new software is written
within the paradigms of OO design and
languages, the wrapper can eventually be
removed once all of the application func-
tions have migrated to the new system. At
this time, the legacy system can also be
removed.

The Incremental Upgrade of Legacy
Systems (IULS) program is a research and
development effort, whose main objective

is to develop, demonstrate, and transition
software wrapper technology that will
enable cost effective, incremental
improvements to fielded weapon system
avionics. The products of IULS are: 1)
methodology for analyzing software
upgrade approach, 2) wrapper technology,
3) tool-set for constructing wrappers for
software upgrades, and 4) demonstrations
of IULS wrapper technology applied to
three significantly challenging problems:
F-15E, C-17, and CV-22 avionics.

IULS is funded by the Air Force
Research Laboratory, Embedded
Information Systems Engineering Branch
(AFRL)/(IFTA). Participants in the proj-
ect include The Boeing Company,
Honeywell Technology Center, General
Dynamics Information Systems, and
TRW-Dayton.

Software Wrapper Technologies
Figure 1 illustrates three hypothetical cases
of implementing software changes using
wrappers.

Re-Host
In the re-host case, the legacy processor is
obsolete and/or its resources are insuffi-

The IULS Approach to Software Wrapper Technology
for Upgrading Legacy Systems

Dr. David Corman
The Boeing Company

This article describes using software wrappers in Incremental Upgrade of Legacy Systems as a key technology for mod-
ernizing legacy systems. It introduces three types of wrappers, describes a process for selecting which upgrade path to
utilize, and discusses a tool-set developed by The Boeing Company for the Air Force that automatically generates wrap-
pers. Lastly, it discusses real-world avionics upgrade examples where the tool-set has been applied and its effectiveness.

Legacy
Processor

 Sync

In Out

Put Get

...110011000111010
1010101010101010
0101110100100110
100010101001010...

Legacy Executable
...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
Processor

Hybrid

Legacy Source

...1100110001110101
010101010101010010
111010010011010001
1100111001010010...

Rehosted Executable Upgrade
Processor

Sync

In Out

Re-hosted
Executable

Put Get

...110011000111010
1010101010101010
0101110100100110
100010101001010...

[Translate]

Compile

Re-host

ISA Emulator Sync

In Out

Legacy
Executable

Put Get

ISA Emulator

...110011000111010
1010101010101010
0101110100100110
100010101001010...

Legacy Executable
...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
ProcessorDecode

Emulate

?

Fetch

Branch

I/O

?

Emulate

Figure 1: Wrapper Cases

10 CROSSTALK The Journal of Defense Software Engineering December 2001

cient to support additional upgrades. The
legacy software is re-hosted to a new
processor by translating its source code
(e.g., Ada 83 to C++) and/or recompiling
it for the new target (e.g., Ada 83 to Ada
95). Reengineering the OFP on the new
processor could not be justified so wrap-
per components are added to make it look
like an object in the OFP. New software
features can be added incrementally to the
wrapped component, or preferably,
designed as new objects in the OFP.

Hybrid
In the hybrid case, the legacy processor
and its OFP are retained for various rea-
sons (high reengineering or logistics costs,
etc.), but its resources are insufficient to
support additional upgrades. Also, there is
an opportunity to satisfy upgrade require-
ments with reuse library components that
are developed with more modern lan-
guages (such as Ada 95 or C++) and tools.

New features can be added incremen-
tally to the upgrade OFP as objects on a
new processor. The objects will be bridged
to the legacy OFP and processor with

wrapper components. As components in
the legacy OFP require changes, they can
be reengineered and moved to the new
processor. At some point in the migration,
the remaining legacy components are re-
hosted, the legacy processor is upgraded
or discarded, and the wrapper compo-
nents in the new OFP, associated with the
legacy OFP interfaces, can be removed.

Emulate
Obsolete or underpowered hardware is
also addressed in the emulate case. The
legacy software is judged to be very costly
to reengineer and/or re-qualify. The
object code is executed on the new proces-
sor by an emulation of the legacy proces-
sor’s instruction set architecture.

Changes can still be made to the lega-
cy executable using the legacy compiler
and software engineering environment.
The emulator and other wrapper compo-
nents make the legacy executable compo-
nent (binary) look like an object. Other
feature upgrades could be added as new
objects on the new processor.

Wrapping Process
As with any other software development
activity, wrapper creation follows a
process, shown in the IDEF0 diagram in
Figure 2, and is automated with tools. In
an IDEF0 diagram, consumed inputs
(e.g., data files) go in the left side of an
activity box; generated outputs (e.g., com-
pleted design objects) emerge from the
right side; constraints (e.g., requirements,
schedules) go in the top; and mechanisms
(e.g., tool support) go in the bottom. The
following subsections describe tool mech-
anisms that support the wrapper design

process and the data that flows between
them.

Wrapper Implementation
Considerations
Wrappers are generally applied at the
application domain level. They act as
clients and servers to the encapsulated
component. Figure 3 illustrates a general
wrapper structure for an OFP on a single
processor. The legacy application inter-
faces with other applications and other
layers only through the wrapper. The
wrapper architecture is tailored to the spe-
cific legacy OFP environment.

The method selected to implement the
upgrade of a legacy system is to an extent
an economic decision. The emulation
option will tend to favor a context of a sta-
ble application, infrequent OFP modifica-
tion, and obsolete hardware. These cases
will generally be lower in performance,
being older systems. Therefore, the con-
text analysis would focus on issues of
throughput, OFP stability, parts obsoles-
cence, OFP utility, etc.

Selecting a hybrid or re-host approach
would generally be appropriate for a more
dynamic and/or higher performance sys-
tem. Typical context would be OFPs that
are subject to periodic update and version
release. In addition, the higher the
throughput needed, the more likely the
upgrade path will not include emulation.
The reason for this analysis factor is that
while software emulation provides a growth
path for the legacy upgrade, there is a
penalty paid for using processing resource
overhead. A hardware emulator approach
will, with time, become a technology
dead-end (as would be the case for the
legacy system) and require more near term
upgrade effort.

Any selected legacy upgrade technique
will, of course, be subject to obsolescence
and eventual upgrading. Therefore, the
methods described for the upgrade process
and wrapper generation emphasize as flexi-
ble an approach as possible. Also, the
methods need to be portable between
hardware platforms since these compo-
nents will change rapidly (on the order of
months vs. years). Therefore, the initial sys-
tem context analysis would focus on OFP
issues such as throughput, stability, etc.

Using the IULS Tool-Set in
Upgrading
As part of the IULS program, Boeing and
its IULS teammates developed a set of
guidelines, processes, and tools to help the
avionics engineer determine and imple-
ment a best wrapper upgrade strategy. The

Figure 2: Nominal Legacy Operational Flight Program Wrapper Process

Software Legacy Systems

Backplane or Shared Memory Driver

Legacy Wrapper

Legacy
Application

Database/Utilities

Application
Layer

Executive/Run-Time

Figure 3: Wrapper Software Structure

The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems

December 2001 www.stsc.hill.af.mil 11

IULS tool-set that was developed in this
effort has played a major role in automat-
ing the upgrade approach in the re-
host/hybrid domains. The tool-set is used
to iteratively develop high-level and
detailed models of the OFP model, the
host model, and the upgrade model.
Figure 4 displays some of the basic ele-
ments of the IULS graphical tool-set.

Briefly, the tool provides a graphical
capability to model the legacy and upgrad-
ed system, including data interfaces and
constraints. It includes a re-use compo-
nent library that can be used to meet
requirements common to avionics applica-
tions. It provides code and documentation
generation capability to construct and
document the software wrapper used to
bridge the legacy and upgraded system.
Also, the tool provides system-modeling
capabilities that can be applied to validate
system performance against scheduling
constraints common to hard real-time
avionics systems.

Customer Inputs to the Process
The select preferred wrapper approaches
activity consists of selecting from among
the three basic wrapper approaches. The
host plans, legacy OFP, and host interface
(I/F) are information supplied by the cus-
tomer. The information specifies the OFP
re-hosting problem in a manner that is
sufficient to trigger the next activities. The
host plans identify the need to re-host the
OFP onto a new target platform and are
used to select one of the three wrapper
approaches, or possibly narrow the selec-
tion down to two of the three approaches
that will be considered during the wrapper
design process.

Characterizing the Problem
The IULS tool-set is used to characterize
and model the legacy system OFP. The
resulting OFP model is a description of
the legacy code, it’s source language, the
available documentation and compilers,
and the description of the I/O required by
the OFP, including timing. The model
describes each interface modality that the
OFP has with other OFPs and with the
legacy host hardware. The tool-set is also
used to develop the host model, which pro-
vides a description of the target host com-
puter environment (not the legacy host).
It includes a description of the machine
code, compilers available, event capabili-
ties, I/O capabilities, and kernel operating
system (OS) interfaces.

The upgrade model is a description of
the plans to upgrade the target host com-
puter in the future. The plans for future

upgrades influence the choice of wrapper
approaches.

The characterization step provides
high-level information that can be used to
perform coarse trade-off analyses that con-
tribute toward a final selection of wrapper
approach as well as some of the basic deci-
sions about the wrapper design. Some of
this high-level model will identify wrapper
components able to be tailored from a
reuse library.

Wrapper Design
As shown in Figure 4, the wrapper is
designed using the OFP model, host
model, and upgrade model, as well as the
reusable wrapper components. The IULS
tool-set includes a set of reusable wrapper
components that are placed on the shelf
and can be either quite general in nature
(e.g., format converters from one process
to another) or domain specific (data
access methods for an aircraft). The

reusable wrapper components are linked
to requirements and test cases that are also
reused. The process of wrapper design
includes specifying the following within
the tool-set:
• Invocation interface: This is the inter-

face for entering into and returning
from the OFP code. It includes the
description of error handling inter-
faces.

• Semaphores and interrupt handlers:
This is the interface that defines syn-
chronous process behavior, both hard-
ware supported and software only.

• Data accessors: This interface defines
accessors for data objects that the OFP
shares with other software modules.

• Emulator configuration: This
describes the emulator that may be
interfaced to the wrapper, depending
on the wrapper approach used.

• Object adapter: This is software that
makes the wrapped OFP look like one

Legacy Signature

Legacy Controller

Wrapper Architectures

Modeling Environment

...1100110001110101010101
010101010010111010010011
010001010100100110101010
111110001001010010101110
100010100101010110101010
0101010101001010101010...

Legacy Software

Upgraded Software
With Wrapped Legacy

Data Transforms

Sync/Control

In/Out/Put/Get

ISA Emulator

Wrapper Library Shelf

Proposed New
System

Wrapper
Framework

Sync

 In Out

t

...110011000111
01010101010101
0101001011...

Put Get
ISA

New
S/W

Infrastructure-CPU-I/ONew Host Processor

Design
Database

Graphical
Design
Editor

Auto-code
Generator

Document
Generator

Test
Generator

Architecture
& Design
Analyzer

Wrapper Toolset

Figure 4: Graphical Tool-Set

Upgraded Software Architecture
New Host

F-15 OFP

OO C++ Ada95

Rehosted

 F-15 OWS

 Ada83

Inertial
Navigation
System G’s

C++

Auto-coded C++ & Ada95

Stores Load

Fuel Load
Avionics

Inputs

Get

Data

Transform

Data

Transfer

Data

Transform

Data

OWS

Processing:

10 Hz

10 Hz Warn

20 Hz

IULS Wrapper

Get Display

Data

Data Transfer

Data

F-15E

 Avionics

Head-Down

OWS

 Display

Heads Up
Display G’s

 Display

OWS

Inputs

OWS

Outputs

Figure 5: OFP Wrapper for F-15 Demonstration

or more objects to an underlying
object request broker (ORB). It
defines the OO interface classes and
methods comprised in the wrapper.

• Legacy port design: If the wrapper
approach calls for re-hosting the lega-
cy OFP, then a description of the
tools, process, and wrapper interface
objects needed to support that
approach are specified.

Evaluation of the Wrapped OFP
After a candidate wrapper is designed and
a baseline determined, it is evaluated. The
evaluation is performed using component
models selected from a library. The compo-
nent models are the representations of the
target hardware system. These are used in
running simulations of the target system to
determine performability. System model-
ing and evaluation tools such as Cosmos
and Foresight can be used in concert with
the IULS tool-set to simulate and evaluate
the wrapper design.

Wrapper Code Generation
Once the wrapper design has successfully
passed evaluation tests, the IULS tool-set
provides the capability to automatically
generate the wrapper using a code genera-
tor. It identifies the versions of the compo-
nents, how those components were tai-
lored, and how those components are to
link together with the OFP. The wrapper is
then linked with the OFP to create the
wrapped OFP.

OFP Integration, Test, and
Documentation
The wrapped components and host com-
ponents are compiled, linked, and integrat-
ed into the target processor system. System
and software testing is performed to a level
appropriate to the avionics application. By
using the same specification for wrapper
design, evaluation, and implementation,
traceability is greatly simplified and facili-
tated. Model objects can be cross-refer-
enced to requirements, implementation
components, evaluation models, tests, and
test results. The IULS tool-set includes a
document generator that compiles software
documentation from the design database
using customizable templates.

Demonstrations
The IULS program included major
demonstrations of two of the wrapper
approaches: modified re-host and emula-
tion. The demonstrations provided an
opportunity to test and tune the tool-set in
a real-world avionics upgrade environ-
ment. The following subsections describe
the results of the application of the IULS
tool-set.

F-15 Demonstration
For the F-15 demonstration, the IULS
problem was to port a legacy F-15 Ada 83
OFP component, the overload warning
system (OWS), into a F-15 OFP written in
C++ running on a new commercial off-
the-shelf (COTS) PowerPC processor. A

wrapper was designed and auto-generated
using the IULS tool-set. This was the first
application of the IULS tool-set and pro-
vided us a framework for testing and tun-
ing of the tool.

Figure 5 (see page 11) shows elements
of the wrapper design. In particular it
shows how the wrapper supports transfer
of data from the OO C++ domain into
process interface messages understood by
the legacy Ada software. The wrapper also
performs necessary data transforms and
includes a bridge from the Ada 83 software
to the C++ and display processes.

The F-15 IULS activity culminated in
a successful live flight demonstration con-
ducted on Dec. 1, 1999. The demonstra-
tion flight plan called for execution of six
test points. These corresponded to combi-
nations of three different weapon loads
with two different fuel configurations. The
pilot, weapon systems officer, and flight
test engineer reported successful test
results.

The relative sizes of the components (in
source lines of code) for the final demon-
stration and flight test OFP are shown in
Table 1.

We collected metrics on the wrapped
system to measure wrapper overhead. It
was indicated that wrapped system added
an average of 0.36 msec and 0.16 msec to
the OWS application execution timelines
for the 20 Hz and 10 Hz tasks, respective-
ly, for operation on a PowerPC 603E. The
computations were all performed within
the time-frame requirements for the OFP.

The F-15 demonstration thoroughly
validated the IULS re-host process and
tool-set. Operationally, the demonstration
received enthusiastic endorsement from
the flight crew who referred to it as a home
run in the post flight debrief. The in-flight
performance was 100 percent in agreement
with the a priori estimates matching all six
test points, exactly. The WrapidH tool
proved to be extremely valuable in devel-
oping the wrapper design, and the auto-
mated code generator worked as expected
in both the Ada and C++ domains.

As predicted, considerable domain
expertise was required to develop the wrap-
per. However, IULS engineers who initial-
ly had no familiarity with the heritage code
performed the bulk of this work. These
engineers were able to readily understand
the legacy Ada and Common Operational
Flight Program (COFP) C++ to the extent
required to support wrapper design and
system de-bug. Wrapper testing confirmed
the prediction that wrapped code integrity
would be intact – no problems were detect-
ed in which wrapped code operation was
an issue. Wrapper overhead was not sub-

Software Legacy Systems

12 CROSSTALK The Journal of Defense Software Engineering December 2001

Radio (UHF1)

Radio (VHF2)

CCU NO. 1

Aircrew Laptop
(ALC) Database Download

TRW's
VIEWstation
Debug Toolset

MCD

MCD
MCK

MCD
1

MCD
2

MCK/MCD Emulator

Not Present

VME Chassis

CCU Legacy
OFP

TRW RePlace
Emulator

CCU NO. 2

Figure 6: C-17 Demonstration for Emulation Wrapping

Component Software Lines of Codes
(Not Comment/Blank)

Total Source Lines

Total OFP (C++ and Ada) 119,363 3 534,054 4
OWS Application (Ada Including PIMs) 7,195 5 23,738 8
Ada Wrapper 482 2 880 0
C++ Wrapper 408 8 811 1

Table 1: Wrapper Component Sizes

December 2001 www.stsc.hill.af.mil 13

The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems

stantial and confirmed system modeling
conducted during phase one of the IULS
program, which had predicted system
throughput was more than adequate for
the demonstration requirements.

C-17 Emulation Demonstration
The IULS emulator approach was demon-
strated by wrapping a legacy C-17 radio
control function (RCF) executable
(JOVIAL source, MIL-STD-1750A
object) with a 1750A ISA emulator run-
ning on a PowerPC processor that repre-
sented an upgraded communications con-
trol unit. The emulator interface and
processor context wrappers were generated
with TRW’s RePLACE tool-set. Figure 6
shows the demonstration concept.

A COTS replacement box (CRB) was
constructed, including COTS processor
(PowerPC). The emulation engine and
RCF OFP were loaded onto the CRB. The
CRB operated in concert with the 2nd
communications control unit (CCU). This
provided a timing challenge since hand-
shaking, normally performed by two
1750A processors across the 1553 inter-
face, was now being performed by the
CRB and one CCU. The system was
demonstrated in the C-17 avionics labora-
tory with production test cases and avion-
ics system hardware. The demonstration
showed an approximately 90 percent
growth capacity for the CRB

The emulation tool-set is being transi-
tioned to the C-17 as part of the on-going
communications open systems architecture
engineering and manufacturing develop-
ment program. In this application, emula-
tion is being extended as part of a larger
open system upgrade. In particular, a new
C++ native language executive is being
developed that will then make calls to
selected (emulated) legacy components. In
effect, the emulated legacy software func-
tions as a library of callable functions. This
is in contrast to the standard emulation
wrapper in which what is simply desired is
to execute the legacy software on a more
modern processor.

The lesson in transiting the emulation
wrapper is that quite frequently programs
will apply tools in a different manner than
were originally planned, and the tool-set
needs to provide inherent flexibility.

CV-22 Demonstration
We are applying the re-host wrapper
approach with a twist during an on-going
demonstration with the CV-22 program.
Figure 7 shows the basic elements of the
demonstration. The challenges are twofold:
First, migrate Ada JASS-JVX Avionics

System Software mission software from
proprietary processor and system architec-
ture to a COTS PowerPC processor and
VME architecture residing under the
Boeing Bold Stroke software infrastruc-
ture. Second wrap a new application
(Quiet Knight – Ada 95) to be executed on
a second COTS processor using the tool-
set and object request broker (ORB) for
distribution.

The CV-22 demonstration is a work in
progress. At the time this article was writ-
ten, the demonstration is planned for
December 2001. The wrapper tool-set is
being used to develop the ORB interface
definition language to construct the wrap-
per. Initial results have been very promis-
ing. The mission OFP has largely (99 per-
cent) been ported to the COTS processor,
and the IULS tool-set has been used to gen-
erate the wrapper software for the ORB.

Summary
This article has described several impor-
tant applications of software wrappers to
legacy software modernization. Under the
AFRL-sponsored IULS program, Boeing
developed a tool-set that can be made
available to qualified requestors from
AFRL/IFTA to support avionics upgrade
opportunities. Wrappers are not a panacea
for every modernization need. However,
experience to date indicates that they can
be an important element within the
upgrade process.u

Legacy Processor
Sync

In Out

Put Get

...11001100011101
0101010101010101
0010111010010011
0100010101001010
...

Legacy OFP
(Ada 83)

...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
Processor

PowerPC
Adv. AYK-14 (MIPS)

Tech Demo Outputs
• Proof of concept for CV-22

Open System Architecture
candidate

• Demonstrated growth
potential for CAAP
function

• Upgrade to CV-22 with
Candidate CAAP S/W using
IULS Toolset to auto
generate wrapper

• Wrapping legacy S/W
enables incremental
upgrades and incremental
re-qualification

IULS AutoWrapper

Legacy System Issues
• Limited / No expandability
 in current CPU to meet
 SOCOM
needs• Proprietary processor

and system
bus

Quiet
Knight

Modules
Migrate to

Ada 95

COTS Proc

JASS
OFP (Ada)

COTS Proc

Bold Stroke
Infrastructure

COTS Replacement Box (CRB)

COTS Operating System

QK
ModulesWra-

pper
RT

-
OB

AARTS API

Wra-
pper

Figure 7: IULS CV-22 Wrapper Demonstration

About the Author
David Corman, Ph.D.,
is a technical fellow of
The Boeing Corpora-
tion. Dr. Corman is cur-
rently working on a vari-
ety of projects that focus

on upgrading of legacy systems. He was
the lead engineer on the Incremental
Upgrade of Legacy Systems (IULS) pro-
gram that resulted in the development of
a wrapper tool-set that has been demon-
strated in real-time applications includ-
ing the F-15, C-17, and CV-22. Dr.
Corman has more than 20 years experi-
ence in software development, including
real time, mission planning, C4I sys-
tems, and avionics domains, and holds
bachelor’s and master’s degrees in systems
science and mathematics, and applied
mathematics from Washington
University in St. Louis. He earned a doc-
torate in electrical engineering from the
University of Maryland, College Park.

The Boeing Company
P.O. Box 516
St. Louis, MO 63166
Phone: (314) 234-3725
E-mail: david.e.corman@boeing.com

